LambdaO4 upside down: a new molecular structure for supported VO4 catalysts.
نویسندگان
چکیده
Vanadium oxide (1 wt %) supported on gamma-Al(2)O(3) was used to investigate the interface between the catalytically active species and the support oxide. Raman, UV-vis-NIR DRS, ESR, XANES, and EXAFS were used to characterize the sample in great detail. All techniques showed that an isolated VO(4) species was present at the catalyst surface, which implies that no V-O-V moiety is present. Surprisingly, a Raman band was present at 900 cm(-1), which is commonly assigned to a V-O-V vibration. This observation contradicts the current literature assignment. To further elucidate on potential other Raman assignments, the exact molecular structure of the VO(4) entity (1 V=O bond of 1.58 A and 3 V-O bonds of 1.72 A) together with its position relative to the support O anions and Al cation of the Al(2)O(3) support has been investigated with EXAFS. In combination with a structural model of the alumina surface, the arrangement of the support atoms in the proximity of the VO(4) entity could be clarified, leading to a new molecular structure of the interface between VO(4) and Al(2)O(3). It was found that VO(4) is anchored to the support oxide surface, with only one V-O support bond instead of three, which is commonly accepted in the literature. The structural model suggested in this paper leaves three possible assignments for the 900 cm(-1) band: a V-O-Al vibration, a V-O-H vibration, and a V-(O-O) vibration. The pros and cons of these different options will be discussed.
منابع مشابه
Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor.
The oxidative dehydrogenation (ODH) of propane to propylene by supported vanadia catalysts has received much attention in recent years, but different reactivity trends have been reported for this catalytic reaction system. In the present investigation, the origin of these differing trends are investigated with synthesis of supported V/SiO2, V/TiO2, and V/Al2O3 catalysts prepared with three diff...
متن کاملEffects of Ti/Mg molar ratio on bi-supported SiO2/MgCl2 (ethoxide type)/TiCl4 catalysts in ethylene homopolymerization and ethylene/1-hexene copolymerization
SiO2/MgCl2 (ethoxide type)/TiCl4 Ziegler-Natta catalysts for use in ethylene polymerization and ethylene/1-hexene copolymerization have been prepared using silica with a supported layer of magnesium ethoxide (Mg(OEt)2) as a catalyst precursor, followed by treating with TiCl4 at different Ti/Mg molar ratios, which showed significant effects on the active centers and pore structures of the cataly...
متن کاملSite-specific vanadates Co4Fe3.33(VO4)6 and Mn3Fe4(VO4)6.
Single crystals of Co4Fe3.33(VO4)6 and Mn3Fe4(VO4)6 were grown from equivalent CoO/Fe2O3/V2O5 and MnO/Fe2O3/V2O5 melts, respectively. The former crystallizes in the orthorhombic space group Pnma with parameters a = 4.965(1) A, b = 10.211(1) A, c = 17.188(3) A, and Z = 2 and is a homeotype of such catalysts as Mg2.5VMoO8. The latter crystallizes in the triclinic space group P1 with parameters a ...
متن کاملImido-modified SiO2-supported Ti/Mg Ziegler-Natta catalysts for ethylene polymerization and ethylene/1-hexene copolymerization
A novel imido-modified SiO2-supported Ti/Mg Ziegler-Natta catalyst for ethylene and ethylene/1-hexene polymerization is investigated. The catalyst is prepared by modification of (SiO2/MgO/MgCl2)TiClx Ziegler-Natta catalysts via supporting vanadium species followed by reaction with p-tolyl isocyanate as imido agents, to get the merits from both the SiO2-supported imido vanadium catalyst and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 20 شماره
صفحات -
تاریخ انتشار 2005